《通分》教学设计
作为一名无私奉献的老师,有必要进行细致的教学设计准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的《通分》教学设计,欢迎阅读与收藏。
《通分》教学设计1教学目标:
1、结合具体情境,感受计算异分母分数加减法的必要性。
2、通过动手操作折纸,理解异分母分数加减法的算理。
3、能正确计算异分母分数加减法,解决简单分数加减法的实际问题。
4、渗透转化思想,培养迁移、类推和归纳概括的能力。
教学重点:能正确计算异分母分数加减法。
教学难点:理解异分母分数加减法的算理和法则。
教学准备:PPT课件、同样大的长方形纸片若干张。
教学过程:
一、复习导入:
1、填一填。
1/2=()/4=4/()
2、找出下列各组数的最小公倍数。
6和87和1411和9
3、将下列各级分数通分。
1/4和3/87/10和5/6
4、抢答:
1/5+2/53/7+2/74/9+5/9
5/8-3/811/15—11/157/12—5/12小结:同分母分数相加减,分母不变,只把分子相加减。
二、探究新知:
1、创设情境。
PPT出示:同学们在手工课上折纸。淘气用一张纸的1/2折一只小船,笑笑用同一张纸的1/4折一只小鸟。
师:根据这些信息,你能提出什么问题?你会解决这些问题吗?(学生列出算式。)
先估一估它们的和(差)是多少?
PPT出示:
1/2+1/4在()之间。
A、0—1/2B、1/2—1C、1—2
2、尝试探索,操作验证。
师:大家估计的正确吗?我们可以用折纸的方法进行验证。
出示操作提示:
(1)在长方形纸上用自己喜欢的颜色涂出它的1/2;
(2)再用不同的颜色涂出它的1/4;(不重复)
(3)观察两种颜色一共占这张纸的几分之几。
学生动手操作后,反馈估算结果。指名说说3/4是怎么得出的。
3、异分母分数相加,能直接计算吗?
同桌交流。小结:异分母相加,先通分,然后按照同分母分数加法的方法进行计算。(板书)
4、自主尝试:1/2—1/4。全班交流计算结果及异分母分数减法的计算方法。
5、试一试:
完成课本“试一试”。(3/4+5/89/10—1/6)
独立完成,同桌检查。
6、小结:异分母分数加减法如何计算?(PPT出示)
三、巩固练习:
1、课本“练一练”第1题。(让学生巩固异分母分数加法的算理。)
2、课本“练一练”第3题。
独立完成,全班交流。
3、大家对异分母分数加减法已经掌握得较好了,接下来同学们来当一次小老师,帮小马虎看看他的计算是否正确。
2/3+1/4=2/12+1/12=3/12=1/4
11/14—5/7=11—5/14—7=6/7
(1)先独立思考。
(2)谁来当老师,帮他指出问题?
(3)通过这道题的练习,你想给小马虎提点什么建议呢?
4、接下来,让我们一起走进生活中的数学世界来解决问题。
我们每天都制造很多的生活垃圾,环卫工作人员对我们在生活中所产生的垃圾进行分类整理,得出以下结论:
废金属占生活垃圾的1/4;
废纸张占生活垃圾的3/10;
塑料袋占生活垃圾的2/5;
其它垃圾占生活垃圾的1/20。
根据这些信息,你能提出哪些数学问题?并尝试解决。
四、拓展延伸:
1、有红、黄、蓝三根彩棒,红棒比黄棒长3/4米,蓝棒比黄棒短1/6米。
(1)红棒与黄棒相差多少米?
(2)如果蓝棒比黄棒长1/6米,红棒与蓝棒相差多少米?
引导学生用画线段图的方法尝试解决。
2、(1)1/2+1/3=1/3+1/4=1/4+1/5=1/3+1/5=
(2)1/2-1/3=1/3-1/4=1/4-1/5=1/3-1/5=
A.观察特点;B.计算,找规律;C.举例应用。
五、课堂总结:
1、通过今天的学习,你有什么收获?还有什么问题?
2、师:在我们的身边数学无处不在,希望同学们能运用今天所学数学知识去解决实际生活中的数学问题。
板书设计:
异分母分数加减法
1/2+1/4=2/4+1/4=3/4
异分母分数加减法则:先通分,再按照同分母分数加减法则计算
1/2—1/4=2/4—1/4=1/4
教学反思:
《折纸》这一课主要是学习异分母分数加减法的计算方法。反思本课节从如下几个方面来谈。
1、根据学生学习的需要灵活使用教材。
教材为孩子们创设了一个生活化的情境,两个小同学在手工课上进行折纸。分别用去了张纸的1/2和1/4。通过比较两个人用纸的多少,引发了学生对如何计算异分母分数的加减法的思考,激发学生的学习兴趣。
利用数学信息学生提出了一些问题并进行了解答。在解答中,学生们遇到了困惑,正是因为这一困惑的出现引起了学生对这种算式该如何计算思考。通过观察、分析、估算和讨论交流,使学生认识到异分母分数相加减,因为分数单位不同必须要先通分,然后按照同分母分数加、减法的法则进行计算。学生的探究计算法则的过程中,体会一步步推理,理解算理。
2、结合生活实际,帮助学生在实际操作、感知的过程中建立数学技能。
本课教学中借助折纸情境,使学生在观察分析、提问解答的活动中,体验数学与生活的密切关系。在学生猜测、验证算式结果并归纳总结出法则的过程中,帮助学生建立分数知识相关的数学模型,激发并满足他们自主合作探究的学习欲望。
3、进行估算,注重对学生估测能力的培养。
本课教学中在合作探究异分母分数加减法计算方法前都设计了让学生先估一估的环节,引导学生认真思考并充分调动感官,结合自己已有的学习经验对加减法算式结果进行估算。这样的设计有助于促进学生自觉地运用所学的估测知识对生活中实际问题的解决方法进行初步感知。
本堂课也出现一些不足,如:个别学生以往的“找两个数的公倍数、通 ……此处隐藏5135个字……
板书设计:
通 分
大 小 不 变
异分母分数 同分母分数
转 化 (公分母)
公倍数
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
设计思路:
在这节课上,我最初的设计是依据教材,按照教材上的指点,重点引导学生通过合作、探究、交流等活动来比较异分母分数的大小。可是,课前的调查和研究表明,无论是学生还是身为教师的我,都已经不能够将学习和教学的关注点仅限于课本了。有了这样的感觉,我就不能够再默守陈规、按部就班的进行原定预设计划了。因此我决定走出教材、了解学生,真正实现“用教材”“备学生”这一高度上来设计这节课。针对教材的编排特点和学生的实际情况,我在教材提供的素材基础上进行了加工,在课前进行了同学们喜欢的体育运动进而进行冬奥会深刻画面的调查,并将这一调查结果引入课堂,学生积极的进行观察、提问、思考、交流等各项活动,在情趣交融的活动中实现教学目标,在轻松愉快的情境中理解、掌握数学知识,收到了良好的教学效果,同时由于课堂上学生是兵教兵,这样充分发挥了学生的主体性,也培养了学生的问题解决能力。
【总评】
现代数学教学理论认为:数学教学是数学思维活动的教学,数学教学本身,就是数学思维活动的过程以及这个过程的分析。通分的方法其实不难,关键是让学生理解为什么要通分,通分的方法?所以这节课的设计,注重给孩子创设一个多元求解的课堂氛围,让学生大胆独立尝试,在交流合作过程中,引导学生进行比较归纳,这样的教学真正发挥了学生学习的主体性,效果很好。如果我们在数学课堂教学中经常注视培养学生的思维能力,当学生的思维受阻时,教师适时点拨,当学生的思维遇卡时,教师巧妙催化,这样会使学生在题中数量间自由地顺逆回环,导致学生发散思维能力的形成,以有利于培养学生的创新思维。
《通分》教学设计7教学内容:
教科书第71页的例14、“试一试”和“练一练”以及第73页的练习十一第1~3题。
教学目标:
1、使学生认识通分的含义,理解和掌握通分的方法,能正确地通分。
2、使学生能联系分数的基本性质理解通分的方法,能解释通分的过程,体会知识的内在联系,培养分析、推理等思维能力。
3、使学生通过主动探索体验成功的感觉,增强学好数学的自信心,产生主动学习的信心和动力。
教学重难点:
掌握通分的方法。
教学过程:
一、复习铺垫,导入新课
师:今天上新课之前老师照例要来考考你们对以前的知识掌握的如何?愿意接受考验吗?
1.口答下面每组数的最小公倍数。
⑴ 3 和 5 的最小公倍数是( ) 。
⑵ 4 和 12 的最小公倍数是( ) 。
⑶ 6 和 9 的最小公倍数是( ) 。
学生先独立思考一下,然后举手回答,并说说你是怎么求的? 指名学生口答。
师:看来大家对最小公倍数的求法掌握不错,接着往下看。
2、你能说出与3/4 大小相等的分数吗?
指名说,并说出思考过程。指名口答时再说说这么做的依据是什么? 过渡:今天我们将继续运用分数的基本性质来学习新的知识。
二、自主探索,建构新知
1.教学例题
(1) 出示例题14:把3/4和5/6改写成分母相同而大小不变的分数。 指名读题,师:你觉得题目中有哪些要求?(分母相同而大小不变) 你会运用以前学过的知识进行改写吗?试试看。
(2)学生在自己本子上独立尝试完成,师巡视,发现不同方法者请板演。
(3)讲评。
师:我们首先来看看第一位同学的,他把它们改写成分母是12的分数,3/4的分母4改写成12要乘3,分子也同时乘3等于9/12,5/6的分母6改写成12要乘2,分子5同时乘2等于10/12,这两个分数的分母相同,它们的分数大小有没有变?为什么?符合题目要求吗?
我们再来看看第二位同学的,把它们改写成分母是24的分数,3/4的分子分母同时乘6等于18/24,5/6的分子分母同时乘4等于20/24,它们的分数大小有没有变?为什么?符合题目要求吗?
师:还可以改写成分母是多少的分数?(指名举例)
师:哦,看来可以用来做他们分母的数还真不少!那么谁来说说在改写的过程中什么发生了变化?什么没有发生变化呢?(指名口答)
师引导并强调分数的分子和分母都变大了,但分数的大小没变。是根据分数的基本性质来做的。
(3)师:其实呀刚才大家在尝试解题的过程中已经不知不觉地学会了一样新知识,就是通分。(板书:通分)像刚才大家把3/4和5/6这两个原本分母不一样的分数,分别改写成了分母一样,而又大小不变的分数,这个过程就可以说是通分。书上是怎么说的呢?我们不妨打开书本来读一读。
(4)生自学书本71页,然后指名说说什么是异分母分数?什么是同分母分数?什么是通分?(根据学生回答是板书:异分母分数——同分母分数)问:那异分母分数化成同分母分数有什么条件吗?(引导回答和原来分数相等,并板书在横线上)
(5)师:这个相同的分母我们也给它取个名字,叫公分母。(指板演题)谁来说说这几位同学各取什么为他们的公分母?(学生口答)
师:那为什么不取10或者20呢?一定要取12、24、48、?它们和原来这两个分母有什么关系?(引导回答出是原来两个分母的公倍数)
师:比较一下,用哪个数做公倍数比较简单?那12和4、6有什么关系呢?那么你们认为通分时我们一般用什么做公分母比较简单呢?(引导归纳:通分时一般用原来几个分母的最小公倍数做公分母。)
(7)小结:现在你能告诉老师完成通分需要几步呢?(学生自由说) 结合学生回答板书:1.找公分母(原分母的最小公倍数)
2.化成同分母分数。
师:那现在我们马上来试一把,先来一个简单的。
2、做练习十一第2题。
学生独立完成,展示交流。
说明:通分找公分母时,可以应用求最小公倍数的方法。
3.教学“试一试”
(1)学生独立完成在书本71页。师巡视发现问题,个别辅导。
(2)展示,全班交流。
师:你通分确定的公分母是多少?你怎样找到的?确定公分母后,应用分数的基本性质,分母乘几,分子也同时乘几。通分就要像课本上这样写出每个分数的转化过程。
三、组织练习,巩固新知
1、完成“练一练”。
学生独立完成,指名三人板演。
检查板演题,说说各是怎样找公分母的,说说要注意的地方。
2、做练习十一第3题。
(1)让学生检查通分,发现问题。
交流:哪组是对的?哪组不对,错在哪里?哪组不够简单?
指出:通分时,通常用几个分母的最小公倍数作公分母,这样既方便结果计算。